
Content Generation Workflow

When a user clicks "Generate Content" on the dashboard, the following process occurs:

1. Input Collection & Validation

 User selects an AI model (GPT-4, Deepseek, etc.)

 User selects an API key from their saved keys

 User selects a prompt template from their organization

 User enters a batch name for organization

 User toggles web scraping on/off

 User enters word count (if web scraping is disabled)

 User can enter custom outline and section prompts (optional)

 User enters keywords (via text area or CSV upload)

2. Form Processing

 For CSV input: Parses primary and secondary keywords

 For text area: Splits keywords by new lines

 Constructs payload for each keyword

3. API Request Processing

 POST request to /api/articles endpoint

 Creates new Batch document in database

 For each keyword, creates Keyword document with initial status "not started"

 Determines prompt type (single-step vs multi-step)

4. Queue Job Creation (for multi-step prompts)

 Retrieves prompt details from database

 Prepares outline and section prompts with keyword substitution

 Adds job to longArticlesQueue (REDIS QUEUE) with parameters:

vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html

o outlinePrompt

o sectionPrompt

o API (key)

o GPT (model)

o secondaryKeywords

o keyword

o customOutlinePrompt

o customSectionPrompt

o _id (of the Keyword document)

5. Queue Processing

 Worker picks up job from Redis queue

 Updates Keyword status to "in progress"

 Initiates content generation process

Steps 6 – 10 is essentially the business logic behind silent content right now in

producing a single article using keywords, combining scraping (google search api +

cheerios), content analysis (done using NLP techniques), Outline + Section Prompting

(using LLM) and then Assembling all the content in html tags.

6. Web Scraping Process

The web scraping stage forms the research foundation for AI-generated content:

 Search Engine Integration: The system queries Google's Custom Search API with

the target keyword

 Result Collection: Top 10 search results are retrieved for comprehensive

topical coverage

 Targets Competitive Content: By analyzing top-ranking pages for the target

keyword

 Content Extraction: For each search result:

o HTML is parsed using Cheerio

o Structural elements (headings, paragraphs, lists) are identified

o Content is extracted and categorized by element type

vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html

o Three separate collections are created:

 Raw article content with HTML structure

 Clean text content without markup

 Heading-specific content for outline inspiration

This stage effectively collects competitive content that's already ranking for the

target keyword, providing a research base for the AI.

7. Content Analysis Process

The analysis stage transforms raw scraped content into actionable insights:

 Text Processing:

o Content is tokenized into individual words

o Extensive filtering removes noise (stopwords, short words, numbers)

o Remaining words are lemmatized (reduced to base forms)

 Keyword Extraction:

o TF-IDF algorithm identifies statistically significant terms

o Terms are ranked by relevance to the topic

o Top 20 terms become primary keywords

o Next 30 terms become secondary keywords

 Context Building:

o Keywords are consolidated across all analyzed articles

o This creates a comprehensive semantic map of the topic

This analytical approach ensures the generated content addresses the same semantic

territory as top-ranking content.

Actual NLP processing at this stage: (programmatically) (easy comments on each line)

 const preprocessedTokens = tokens

 .map(token => token.toLowerCase()) // Lowercase all tokens

 .filter(token => token.length >= minWordLength) // Remove short words

 .filter(token => !stopwords.has(token.toLowerCase())) // Remove stopwords

 .filter(token => !numericRegex.test(token)) // Remove numerics

 .filter(token => !excludedKeywordRegex.test(token)) // Remove keywords

with numbers

 .map(token => token.replace(/[.,\/#!$%\^&*;:{}=\-_`~()]/g, '')); //

Remove punctuation

 // Custom lemmatization function

 const customLemmatizer = token => {

 if (token.endsWith('ing') || token.endsWith('ed')) {

 // Likely a verb

 return winkLemmatizer.verb(token);

 } else if (token.endsWith('s')) {

 // Likely a noun

 return winkLemmatizer.noun(token);

 } else {

 // Default to verb as a general case

 return winkLemmatizer.verb(token);

 }

 };

 // Lemmatize tokens after preprocessing

 const lemmatizedTokens = preprocessedTokens.map(customLemmatizer);

 // TF-IDF keyword extraction

 const tfidf = new TfIdf();

 tfidf.addDocument(lemmatizedTokens);

 // Get the list of unique words

 const uniqueWords = Array.from(new Set(lemmatizedTokens));

 // Calculate the TF-IDF scores for each word

 const keywordScores = {};

 uniqueWords.forEach(word => {

 keywordScores[word] = tfidf.tfidf(word, 0); // Use 0 as the document index

 });

 // Sort keywords by TF-IDF score and select primary and secondary keywords

 const sortedKeywords = Object.entries(keywordScores)

 .sort((a, b) => b[1] - a[1]);

 // console.log('sortedKeywords', sortedKeywords);

 // const allKeywords = sortedKeywords.slice(0, 100).map(([word, _]) =>

word);

 const primaryKeywords = sortedKeywords.slice(0, 20).map(([word, _]) =>

word);

 const secondaryKeywords = sortedKeywords.slice(20, 50).map(([word, _]) =>

word);

8. Outline Generation Process

The outline generation stage creates the content structure:

 AI Prompt Construction:

o Scraped heading data is formatted as JSON

o Target keyword is included for context

o Extracted keywords provide topical guidance

o Custom outline prompt is incorporated if provided

 AI Response Processing:

o AI generates a structured JSON outline

o Each section includes:

 Strategic heading names based on competitive analysis

 Appropriate heading levels (h2-h4) for content hierarchy

 Detail rating (1-5) to control section depth

This ensures the content structure mirrors successful competitor content while

maintaining SEO optimization.

Actual prompt at this stage given to LLM:

jsonObjectString += `\n

These JSON objects detail the structure of multiple articles. Use this

information, along with the provided keywords ${allKeywordsStr}, to generate a

comprehensive outline for an article about ${keyword}. Ensure the content is

engaging and adheres to current SEO best practices.

 Format the response as:

 {

 "word_count": [optimal total word count],

 "sections": [

 {

 "heading_name": "[Derived from JSON data]",

 "heading_level": "h2",

 "details": [detail level between 1 and 5]

 },

 ...

]

 } ${customOutlinePrompt}`;

9. Section Generation Process

The section generation stage builds the actual content:

 Incremental Content Creation:

o Each heading becomes its own generation task

o Section prompts include:

 The heading title

 HTML heading level for proper formatting

 Detail level specification (determines section length)

 Primary and secondary keywords for topical relevance

 Any custom section prompt provided by the user

 Resilient Processing:

o Robust error handling with exponential backoff retry logic

o Each section is added to the growing article

o HTML formatting is preserved for proper presentation

Actual Prompt at this stage given to LLM:

for (let [index, heading] of headings.entries()) {

 const wrapperPrompt = `Write a section about '${heading.heading_name}' using

<h${heading.heading_level}> for the title. Ensure the content is thorough and

reflects a detail level of '${heading.details}' out of 5, formatted with

appropriate HTML tags. Use both primary and secondary keywords from the provided

list.

 ${sectionPrompt}. For more secondary keywords you can use ${secondaryKeywords

|| ""}, only using those which are necessary.`;

10. Content Assembly

 Combines all generated sections

 Formats with proper HTML tags

 Ensures keyword distribution throughout the article

11. Database Update

 Updates Keyword document with generated content

 Sets status to "completed"

 Stores image URL if generated

12. Error Handling

 Updates Keyword status to "failed" with error message

 Implements retry logic with exponential backoff

13. Completion

 Job is removed from queue

 User can view completed article in the batches section

 Content is available for WordPress publishing

