Content Generation Workflow

When a user clicks "Generate Content" on the dashboard, the following process occurs:

1. Input Collection & Validation

e User selects an AI model (GPT-4, Deepseek, etc.)

e User selects an API key from their saved keys

e User selects a prompt template from their organization

e User enters a batch name for organization

e User toggles web scraping on/off

e User enters word count (if web scraping is disabled)

e User can enter custom outline and section prompts (optional)

e User enters keywords (via text area or CSV upload)

2. Form Processing

e For CSV input: Parses primary and secondary keywords
e For text area: Splits keywords by new lines

e Constructs payload for each keyword

3. API Request Processing

e POST request to /api/articles endpoint
e Creates new Batch document in database
e For each keyword, creates Keyword document with initial status "not started”

e Determines prompt type (single-step vs multi-step)

4. Queue Job Creation (for multi-step prompts)
e Retrieves prompt details from database
e Prepares outline and section prompts with keyword substitution

e Adds job to longArticlesQueue (REDIS QUEUE) with parameters:

vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html

o outlinePrompt
o sectionPrompt
o API (key)

o GPT (model)

o secondaryKeywords

o keyword

o customOutlinePrompt

o customSectionPrompt

o _id (of the Keyword document)

5. Queue Processing

e Worker picks up job from Redis queue
e Updates Keyword status to "in progress"

e Initiates content generation process

Steps 6 - 10 is essentially the business logic behind silent content right now in
producing a single article using keywords, combining scraping (google search api +
cheerios), content analysis (done using NLP techniques), Outline + Section Prompting
(using LLM) and then Assembling all the content in html tags.

6. Web Scraping Process

The web scraping stage forms the research foundation for AI-generated content:

e Search Engine Integration: The system queries Google's Custom Search API with
the target keyword

e Result Collection: Top 10 search results are retrieved for comprehensive
topical coverage

e Targets Competitive Content: By analyzing top-ranking pages for the target
keyword

e Content Extraction: For each search result:
o HTML is parsed using Cheerio
o Structural elements (headings, paragraphs, lists) are identified

o Content is extracted and categorized by element type

vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
vscode-file://vscode-app/c:/Users/farza/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html

o Three separate collections are created:
= Raw article content with HTML structure
= (Clean text content without markup

» Heading-specific content for outline inspiration

This stage effectively collects competitive content that's already ranking for the
target keyword, providing a research base for the AI.

7. Content Analysis Process

The analysis stage transforms raw scraped content into actionable insights:
e Text Processing:
o Content is tokenized into individual words
o Extensive filtering removes noise (stopwords, short words, numbers)
o Remaining words are lemmatized (reduced to base forms)
e Keyword Extraction:
o TF-IDF algorithm identifies statistically significant terms
o Terms are ranked by relevance to the topic
o Top 20 terms become primary keywords
o Next 30 terms become secondary keywords
e (Context Building:
o Keywords are consolidated across all analyzed articles
o This creates a comprehensive semantic map of the topic

This analytical approach ensures the generated content addresses the same semantic
territory as top-ranking content.

Actual NLP processing at this stage: (programmatically) (easy comments on each line)

preprocessedTokens
.map(token.toLowerCase())
.filter(token.)

filter(stopwords.has (token.toLowerCase()))
.filter(numericRegex.test())
.filter(excludedKeywordRegex. test ())

token.replace(/[.,\/#!$%\"&*; : {}=\-_"~()1/g, ""));

customLemmatizer {
(token.endswith('ing") token.endswith('ed"')) {

winkLemmatizer.verb();
(token.endswith('s"')) {

winkLemmatizer.noun();

{

winkLemmatizer.verb();

lemmatizedTokens preprocessedTokens .map (

tfidf TfIdf();
tfidf.addDocument (

uniquelWords = Array.from(Set(

keywordScores {};
uniqueWords.forEach({
[] = tfidf.tfidf(5 @3
1

sortedKeywords = Object.entries(

.sort((a, b) [1] [11);

primaryKeywords = sortedKeywords.slice(@, 20).map(([

secondaryKeywords = sortedKeywords.slice(20, 50).map(([

8. Outline Generation Process

The outline generation stage creates the content structure:
e AI Prompt Construction:
o Scraped heading data is formatted as JSON
o Target keyword is included for context
o Extracted keywords provide topical guidance
o Custom outline prompt is incorporated if provided
e AI Response Processing:
o AI generates a structured JSON outline
o Each section includes:
= Strategic heading names based on competitive analysis
= Appropriate heading levels (h2-h4) for content hierarchy
= Detail rating (1-5) to control section depth

This ensures the content structure mirrors successful competitor content while
maintaining SEO optimization.

Actual prompt at this stage given to LLM:

These JSON objects detail the structure of multiple articles. Use this
information, along with the provided keywords , to generate a
comprehensive outline for an article about . Ensure the content is
engaging and adheres to current SEO best practices.

Format the response as:

{

"word count": [optimal total word count],
"sections": [

{

"heading name": "[Derived from JSON data]",
"heading level": "h2",
"details": [detail level between 1 and 5]

9. Section Generation Process

The section generation stage builds the actual content:
e Incremental Content Creation:
o Each heading becomes its own generation task
o Section prompts include:
= The heading title
= HTML heading level for proper formatting
= Detail level specification (determines section length)
= Primary and secondary keywords for topical relevance
= Any custom section prompt provided by the user
e Resilient Processing:
o Robust error handling with exponential backoff retry logic
o Each section is added to the growing article

o HTML formatting is preserved for proper presentation

Actual Prompt at this stage given to LLM:

[)] headings.entries()) {
wrapperPrompt "Write a section about '${heading. ' using
<h${heading. > for the title. Ensure the content is thorough and
reflects a detail level of '${heading. ' out of 5, formatted with
appropriate HTML tags. Use both primary and secondary keywords from the provided

list.

For more secondary keywords you can use

, only using those which are necessary. ;

10.

Content Assembly

Combines all generated sections
Formats with proper HTML tags

Ensures keyword distribution throughout the article

Database Update

Updates Keyword document with generated content
Sets status to "completed”

Stores image URL if generated

Error Handling

Updates Keyword status to "failed" with error message

Implements retry logic with exponential backoff

Completion
Job is removed from queue
User can view completed article in the batches section

Content is available for WordPress publishing

